Enhancement of long-term memory retention and short-term synaptic plasticity in cbl-b null mice.

نویسندگان

  • Dong Ping Tan
  • Qi-Ying Liu
  • Naohiro Koshiya
  • Hua Gu
  • Daniel Alkon
چکیده

The cbl-b gene is a member of the cbl protooncogene family. It encodes a protein with multiple domains, which can interact with other proteins in a variety of signaling pathways. The functions of cbl family genes in the brain are unknown. In this report, we used genetic, immunohistochemical, behavioral, and electrophysiological approaches to study the role of cbl-b in learning and memory. Cbl-b null mice developed normally and had no abnormalities in their locomotor performance. In spatial learning and memory studies, cbl-b null and WT mice performed similarly during training. To test memory retention, two probe trials were used. cbl-b null mice performed slightly better 1 day after training. However, in the probe trial 45 days after training, the cbl-b null group showed significantly higher memory retention than WT mice, suggesting an enhancement of long-term memory. Using electrophysiological approaches, we found there was enhanced paired-pulse facilitation in the Schaffer Collateral-CA1 glutamatergic synapses of the cbl-b null mice. On the other hand, there was no difference in long-term potentiation between the two groups of mice. In summary, we provide evidence that (i) cbl-b protein is concentrated in the synaptic regions of CA1, CA3, and the dentate gyrus of the hippocampus; (ii) cbl-b null mice have enhanced long-term memory; and (iii) cbl-b null mice show an enhancement in short-term plasticity. These results indicate that cbl-b is a negative regulator of long-term memory, and its neuronal mechanism regulates synaptic transmission in the hippocampus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P19: Long-Term Potentiation

The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...

متن کامل

Repeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo

Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...

متن کامل

P18: Signaling Pathway in Long-Term Potentiation

Synaptic plasticity in the central nervous system (CNS) of mammals has been discussed for many years. Several forms of synaptic plasticity of mammal’s CNS have been identified, such as those that occur in long-term potentiation (LTP). Different types of LTP have been observed in distinctive areas of the CNS of mammals. The hippocampus is one of the most important areas in the CNS that pla...

متن کامل

Aspirin changes short term synaptic plasticity in CA1 area of the rat hippocampus

Introduction: The prostaglandin E2 (PGE2), a cyclooxygenase (COX) product, play critical roles in the synaptic plasticity. Therefore, long term use of COX inhibitors may impair the synaptic plasticity. Considering the wide clinical administration of aspirin and its unknown effects on information processing in the brain, the effect of aspirin and sodium salicylate on the short term synaptic p...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 13  شماره 

صفحات  -

تاریخ انتشار 2006